Weekly demand for refrigerators at an appliance store has a Poisson distribution with 4. The holding and stockout cost for refrigerators at the store are $40 and $125 per week, respectively. Replenishment orders for refrigerators incur a fixed cost of $150.
Find the optimal parameters (s, S), and the corresponding optimal cost.
Additionalpropertiesthathelpdeviseanalgorithm:
Let y* minimize g(y); then s* ≤ y* ≤ S*
Let s = max{y < y*|g(y, S) ≤ g(y)}; then s is the optimal reorder point for S
If S’ and S are two order-up-to levels, then g(s*(S),S) < g(s*(S’),S’) if and only if g(s*(S’),S) < g(s*(S’),S')
If (s*, S*) are optimal with cost g* = g(s*, S*) then S* ≤ max{y ≥ y*|g(y) ≤ g*}
We can now state an algorithm for finding (s*, S*)
While g(S) ≤ g':
If g(s', S) < g',
Set S'=S
While g(s,S')≤g(s+1):
Sets=s+1
End while
Set s'=s;g'=g(s',S')
End if
Set S = S + 1
End while
Return (s', S')